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1 Introduction
Runtime Verification (rv) is aimed at analyzing individual execution traces and temporal behaviors
observed from running programs and systems. Its traditional purpose is in detecting the lack of confor-
mance with respect to a formal specification. While very early rv systems were based on specifications
given in some form of propositional temporal logic, recent efforts have focused on monitoring so-called
parametric specifications over events that carry data. Since a monitor for such specifications has to
store observed data, the challenge is to have an efficient representation and manipulation of data. The
fundamental problem is that the actual values of the data are not necessarily bounded or provided in
advance.

In this paper, we describe our monitoring tool, DejaVu, which implements our algorithm [HPU17]
for monitoring first-order past linear-time temporal logic over a sequence of events that carry data. We
propose the use of Binary Decision Diagrams (bdds) [Bry86] for representing and manipulating sets
of observed data since (1) bdds provide highly compact representations, (2) operations over bdds, in
particular complementation, are very efficient, and (3) the monitor construction for the propositional
case shown in [HR02] naturally extends to bdds. Our experiments show a substantial improvement in
performance compared to a related tool.

2 Syntax and Semantics
First-Order Past Linear-time Temporal Logic (fo-pltl) includes Boolean connectives, past temporal
modalities previously ( ) and since (S), and the existential quantifier over data variables. The
formulas of fo-pltl are defined by the following grammar:

ϕ = > | x = λ | ¬ϕ | ϕ1 ∨ ϕ2 |  ϕ | ϕ1 S ϕ2 | ∃x. ϕ

where x is a variable over a data domain X and x = λ is an atomic formula that denotes a dynamic test
between a value assigned to x and the result of a function λ over current events. Other modalities once
(�) and historically (�) are derived as usual. Then, the satisfaction relation (s, i, γ) � ϕ indicates
that the sequence s of events satisfies ϕ at the position i relative to an assignment γ over all free variables
in ϕ. We inductively define the relation � as follows:

(s, i, γ) � x = λ ↔ (x 7→ λsi) ∈ γ
(s, i, γ) � ¬ϕ ↔ (s, i, γ) 2 ϕ
(s, i, γ) � ϕ1 ∨ ϕ2 ↔ (s, i, γ) � ϕ1 or (s, i, γ) � ϕ2

(s, i, γ) �  ϕ ↔ (s, i− 1, γ) � ϕ
(s, i, γ) � ϕ1 S ϕ2 ↔ ∃j ∈ [0, i]. (s, j, γ) � ϕ2 and

∀k ∈ (j, i]. (s, k, γ) � ϕ1

(s, i, γ) � ∃x. ϕ ↔ ∃a ∈ dom(x). (s, i, γ ∪ {(x 7→ a)}) � ϕ
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3 DejaVu and Evaluation
The DejaVu system consists of a program translate : Spec → (E+ → B+), which generates a monitor
program when provided an fo-pltl specification. The generated monitor takes as input a sequence of
events (a trace), and returns a Boolean value for each position in the trace. The tool is implemented
in Scala using the standard approach where a parser parses the specification and produces an abstract
syntax tree, which is then traversed and translated into the monitor program.

The performance of DejaVu is evaluated by comparing against MonPoly [BKMZ15] using three prop-
erties. The Access property states that if a file is accessed by a user, then the user should have logged
in and not yet logged out, and the file should have been opened and not yet closed. The File property
states that if a file is closed, then it must have been opened (and not yet closed) with some mode (e.g.
read or write). Finally, the Fifo property is a conjunction of four subformulas about data entering and
exiting a queue.

Table 1: Performance comparison of DejaVu and MonPoly
Property Trace Length MonPoly (sec) DejaVu (sec)

bits per var.: 20 (40, 60)

Access
11,006 1.9 3.1 (3.3, 3.2)
110,006 241.9 6.1 (9.1, 10.9)

1,100,006 58455.8 36.8 (61.9, 88.8)

File
11,004 61.1 2.8 (2.8, 3.0)
110,004 7348.7 6.3 (6.5, 8.6)

1,100,004 dnf 30.3 (43.9, 59.5)

Fifo
5,051 158.3 195.4 (oom, -)
10,101 1140.0 err (-, -)

Table 1 shows the result of the evaluation. The properties were evaluated with each tool on traces of
sizes up to 1 million events. Traces have the general form that initially numerous opening events (login,
open, enter) occur, in order to accumulate a large amount of data stored in the monitor, after which a
smaller number of corresponding closing events (logout, close, exit) occur. In addition, for each trace,
we experimented with three different bit-vector sizes —20, 40 and 60 bits— for data encodings in bdds,
which corresponds to the ability to store approximately (and unnecessarily for these traces) a million,
a trillion, and a quintillion different values for each variable, respectively. In the table, the following
abbreviations are used: DNF = Did Not Finish (during 16 hours), oom = Out of Memory, and err =
an array index out of bound error in the bdd package.

We can see from Table 1 that with respect to the first two properties, DejaVu outperforms MonPoly
by a factor up to 3000. Those are substantial differences, and demonstrates that BDDs may be an
interesting way to refer to stored data. However, for the last Fifo property, the two systems are
somewhat comparable, although MonPoly seems to do better on this particular property. Increasing the
number of bits allocated per variable, from 20 to 40 and 60, does not seem to have a substantial impact
on the performance, except for the Fifo property, where it causes an OOM result for 40 bits.
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